B-Field from Cylindrically Symmetric Current Distributions

Recall we discussed cylindrically symmetric charge distributions in Section 4-5. We found that a cylindrically symmetric charge distribution is a function of coordinate ρ only (i.e., $\rho_{v}(\bar{r})=\rho_{v}(\rho)$).

Similarly, we can define a cylindrically symmetric current distribution. A current density $J(\bar{r})$ is said to be cylindrically symmetric if it points in the direction \hat{a}_{z} and is a function of coordinate ρ only:

$$
J(\bar{r})=J_{z}(\rho) \hat{a}_{z}
$$

In other words, $J_{\rho}=J_{\phi}=0$, and J_{z} is independent of both coordinates z and ϕ.

We find that a cylindrically symmetric current density will always produce a magnetic flux density of the form:

$$
\mathrm{B}(\bar{r})=B_{\phi}(\rho) \hat{a}_{\phi}
$$

In other words, $B_{\rho}=B_{z}=0$, and B_{ϕ} is independent of both coordinates z and ϕ.

Now, lets apply these results to the integral form of Ampere's Law:

$$
\oint_{c} \mathbf{B}(\bar{r}) \cdot \overline{d \ell}=\oint_{c} B_{\phi}(\rho) \hat{a}_{\phi} \cdot \overline{d \ell}=\mu_{0} I_{e n c}
$$

where you will recall that $I_{\text {enc }}$ is the total current flowing through the aperture formed by contour C :

Say we choose for contour C a circle, centered around the z axis, with radius ρ.

This is a special contour, called the Amperian Path for cylindrically symmetric current densities. To see why it is special, let us use it in the cylindrically symmetric form of Ampere's Law:

$$
\begin{aligned}
\oint_{c} B_{\phi}(\rho) \hat{a}_{\phi} \cdot \bar{d} \ell & =\mu_{0} I_{e n c} \\
\int_{0}^{2 \pi} B_{\phi}(\rho) \hat{a}_{\phi} \cdot \hat{a}_{\phi} \rho d \phi & = \\
B_{\phi}(\rho) \rho \int_{0}^{2 \pi} d \phi & = \\
2 \pi \rho B_{\phi}(\rho) & =\mu_{0} I_{e n c}
\end{aligned}
$$

From this result, we can conclude that:

$$
B_{\phi}(\rho)=\frac{\mu_{0} I_{e n c}}{2 \pi \rho}
$$

Q: But what is $I_{\text {enc }}$?
A: The current flowing through the circular aperture formed by contour C!

We of course can determine this by integrating the current density $J(\bar{r})$ across the surface of this circular aperture $\left(\overline{d s}=\hat{a}_{z} \rho d \rho d \phi\right)$:

$$
\begin{aligned}
I_{e n c} & =\iint_{S} J(\bar{r}) \cdot \overline{d s} \\
& =\int_{0}^{2 \pi} \int_{0}^{\rho} J_{z}\left(\rho^{\prime}\right) \hat{a}_{z} \cdot \hat{a}_{z} \rho^{\prime} d \rho^{\prime} d \phi \\
& =2 \pi \int_{0}^{\rho} J_{z}\left(\rho^{\prime}\right) \rho^{\prime} d \rho^{\prime}
\end{aligned}
$$

Combining these results, we find that the magnetic flux density $B(\bar{r})$ created by a cylindrically symmetric current density $J(\bar{r})$ is:

$$
\begin{aligned}
\mathbf{B}(\overline{\mathrm{r}}) & =\frac{\mu_{0} \boldsymbol{I}_{\text {enc }}}{2 \pi \rho} \hat{a}_{\phi} \\
& =\hat{a}_{\phi} \frac{\mu_{0}}{\rho} \int_{0}^{\rho} \mathcal{J}_{z}\left(\rho^{\prime}\right) \rho^{\prime} d \rho^{\prime}
\end{aligned}
$$

For example, consider again a wire with current I flowing along the z-axis. This is a cylindrically symmetric current, and the total current enclosed by an Amperian path is clearly I for all ρ (i.e., $I_{e n c}=I$).

From the expression above, the magnetic flux density $B(\bar{r})$ is therefore:

$$
\mathbf{B}(\bar{r})=\frac{\mu_{0} I}{2 \pi \rho} \hat{a}_{\phi}
$$

The same result as determined by the Biot-Savart Law!

